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Structured query languages, such as those available for
relational databases, are becoming increasingly desirable for all
databzce management systems. Such languages arc applicative:
there 15 no need for an assignment or update statement. A now
technique is described that allows for the implementation of
applicative gquery languages agsinst most commonly used database
systems. The technique involves "lazy" evaluation and has a
nunber of advantages over existing methods: it allows queries and
functions of arbitrary complexity to be constructed; it reduces
the use of secondary storage; it provides a simple control
structure through which interfaces to other programs may be
constructed; and the implementation, including the database
interface, is quite compact. Aalthough tte technique is presented
for a specific functional programming system, and for a Codasyl
DBMS, the techniques are general and may be used for other auery
languages and database systems.
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1.0 INTRODUCTION

It is generally held that the more powerful programming
languages are those that provide the user with functions for the
manipulation of "bulk" data: the array operators of APL, and the
functionals such as MAPCAR in LISP are well known

examples [14, 17). These operators allow the use of simple

R T R e L

expressions for what would otherwise have to be implemented

-y

through more complicated code containing explicit control
structures such as iteration. The same is true for database query
languages. Consider a query that finds the names of employees who
are under 30 and are paid more than the average salary for all

employees.

retrieve NAI'E from EMPLOYEE where AGE < 30 and

SALARY > average(retrieve SALARY from EMPLOYEE)

There are a number of problems involved in interpreting such a
query and the purpose of this paper is to describe an evaluation
technique that not only overcomes these problems, but also allows
arbitrarily complex queries or functions to be evaluated, The

form retrieve..from.. is an expression which, as far as the user

is concerned, produces a sequence or set of objects. The use of

such expressions greatly simplifies the process of constructing a

database query, which would otherwise call for a relatively
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complicated, iterative program. (The syntax of the example above
is not intended as an example of a specific language; but it is
not unlike SEQUEL [6) and some of the more concise query languages

for hierarchical or network databases [13}].)

To our knowledge there are two methods of implementing such a
query that are currently in use. One approach, which we shall
call the "immediate" approach, is to instantiate phfsically the
sequences or sets produced by the retrieve expression. A
relational data management system would be quite likely to create
an intermediate relation for the result of the retrieve SALARY..
expression, and this would have to be temporarily held in
secondary storage. The second approach, the "translation" method,
is to translate the program into an iterative program which is
then run against the database. 1In this case, the query above
would be translated into two iterative lcops: one to traverse the
EMPLOYEE and print out NAMEs, the other to traverse the EMPLOYEE
file and compute the average SALARY. Both approaches have
disadvantages. The immediate method reqrires substantial
quantities of temporary working space, and since this is usually
available only as secondary storage, results in rather poor
execution times for queries. The translation method usually
permits only a limited number of program forms, limiting the user

to relatively simple queries: those that can be constructed out

of iterations over the available data.

e e+



Another problem arises with optimization: the crudest
implementation of the query above would call for the

sub-expression

average (retrieve SALARY from EMPLOYEE)

to be computed for each retrieval of an EMPLOYEE in the
surrounding retrieve NAME from .. expression. This is most
inefficient, and any reasonable implementation would precompute
the average. However, this is still not optimal: in the case
that there are no EMPLOYEEs that satisfy the condition AGE < 30,
there is no need ever to compute the average SALARY. The optimal
iterative program would traverse the employee file locking for an
instance that satisfies AGE < 30 and, on encountering the first
such instance, compute the average and set a flag indicating that
it had been computed. This solution is hardly "structured" code
and would probably be overlooked by most applications programmers,
however it is an example of the kind of optimization that can in

practice lead to substantial savings in the amount of i/o required

to evaluate a query.

We shall describe a method for the evaluation of database
queries which overcomes the disadvantages of both the immediate
and the translation approaches; and which automatically performs
the kind of optimization just described. The method exploits
"lazy” evaluation techniques. Although these have been widely
discussed [4, 16]) and implemented (10, 24]) for a number of

high-level languages, we believe that they will prove important in
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the evaluation of database queries, where, because of space
limitations, it is physically impossible to perform the in-core
manipulation ofylists.or arrays in the fashion of LISP or APL.

Some related suggestions have been made for databases; in

particular it has been suggested [22] that relational operators
could in certain circumstances be "pipelined", leading to
substantial savings in the storage required for intermediate

relations.

In order to describe how this method may be implemented, we
shall first describe a specific guery language: the Functional
Query Language, FQL. The syntax of FQL is not intended as an
ideal syntax for anyone except, perhaps, mathematicians., It is
meant as a formaiism for the underlying control structures of
database queries. For example, it is an easy matter to represent

retrieve..from..'here.. in terms of the FQL operators. While it

would ba possible to interpret a conventional guery language
directly by using the techniques described in this paper, we shall
use the FQL formalism because it appears to us to be more
fundamental in that it allows the construction of any program;

not a limited set of database access forms. The second section of

this paper will therefore describe FQL.

The next section of the paper will specify the basic data
structures and procedures for the implementation of FQL. While
this will be done without reference to a specific programming
language, it is hoped that anyone familiar with programming

languages such as Pascal or ADA [1, 27]), which have good methods
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for defining data types, will have no difficulty in translating g
our formal expression of the data structures and procedures into

working code.

Following the formal description of the implementation, we
shall provide some observations on the implementation which may be

of practical use to people who wish to build an interpreter along

these lines. This includes some details of physical
representation of data structures, garbage collection, and type
checking. A final section describes some further improvements and
optimization techniques that the authors have not yet implemented,

but see as valuable extensions to the technique.

2.0 THE FUNCTIONAL QUERY LANGUAGE FQL

FQL is based upon a Functional Programming system as

suggested by Backus {2). Rather than using explicit control
structures, a few operators or functional forms are used to
construct new functions, or database gueries out of existing

functions. Consider a very simple FQL query:

1EMPLOYEE. *NAME;
Informally this reads: take the sequence of all EMPLOYEEs and

create a sequence of their NAMEs, The result of typing in this

query is that a sequence of names is printed out. Looking more

closely at the query, it is built out of two functions, !EMPLOYEE
and NAME, which are both functions that are defined in the

database. IEMPLOYEE is a function that generates a sequence of

EMPILOYEEs; NAME is a function that takes an EMPLOYEE as argument
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and produces a character string as result. * is an operator: in
this query it operates on the function NAME, which works on single
EMPLOYEEs, to create a function *NAME that operates on seguences
of EMPLOYEEs to produce a sequence of character strings. The
MAPCAR function of LISP is a direct analog of this operator.
Finally, the symbol "." denotes the composition of the two
functions !EMPLOYEE and *NAME into a function that creates a
sequence of character strings. Note that the composition is in
"reverse polish" notation. This is a deliberate choice resulting

from the desire to have queries correspond to the database "access

path”.
Function Type
NAME: EMPLOYEE -> STRING
IEMPLOYEE: -> *EMPLOYEE
*N.AME: *EMPLOYEE -> *STRING
{ EMPLOYEE. *NAME ¢ -> *STRING

Figure 1. Some simple FQL
functions and their types.

Figure 1 shows the functions that constitute this query
together with their types. Note that the symbol "*" also has a
meaning when applied to a type and denotes a sequence of elements
of that type; thus *STRING denotes a seguence of character
strings. The type of a function describes the types of the

objects in its domain and range. EMPLOYEE denotes a data type,

and {EMPLOYEE is a function that gcnerates all instances of that

data type; both IEMPLOYEE and the whole query are functions with

b LT g

- . . S r———
oL lacreg RPN Cares g 5y ¢
R = AR L 3 '

Ty b s -l fing

oip -
.o
I
s A

B PR J A S 7

b L




Page 8

no arguments. We may use the notion of data types to describe the
formal data model that is used by FQL. A database consists of a
collection of types (often called classes) and functions (often
called attributes) that have these types as ranges and domains. A
somewhat richer version of this model has been proposed by
Shipman, who also proposes a query language based upon a few
simple iterative constructs. It is possible that the techniques
described here could serve to implement Shipman®s proposals. The
three major data models, relational, hierarchical and network, can
all be represented within the functional framework and details of
this are discussed in [3, 21). As an example of the functional
model, figure 2 shows a simple database and some of the functions

it defines,

b5 100 ".;&i -
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DEPARTMENT

EMPLOYEE

MARRIED

Function Type
IDEPARTMENT:: -> *DEPARTMENT
{EMPLOYEE: -> *EMPLOYEE
DNIME: DEPARTMENT -> STRING
NAME: EMPLOYEE -> STRING
SAL: EMPLOYEE -> NUM
AGE: EMPLOYEE -> NUM

MARRIED: EMPLOYEE -> BOOL
DEPT: EMPLOYEE -> DEPARTMENT
DEPT: DEPARTMENT -> *EMPILOYEE
NAME: STRING -> *EMPLOYEE

Figure 2. A simple database and the
functions it provides.

This figure describes a database containing five types of
which two, EMPLOYEE and DEPARTMENT are specific to the database,
and three, NUM(eric), STRING and BOOL(ean), are always defined.
!DEPT and {NAME are inverse functions: database systems have
sophisticated mechanisms for maintaining inverses. 1In a Codasyl
system, for example, {DEPT would be implemented through a set,
and fNAME through a hash function. 1In general we do not expect

all database functions to have efficiently implemented inverses.

M '-w-wmeu‘nw-;}'a; -
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In order to complete the description of FQL, we must
introduce a few more operators and another method of extending
types. The notation [NUM,STRING] denotes the type of tuples of
objects cf type NUM and STRING. The same notation applied to
functions denotes a function that yields a tuple. For example,
[NAME, SAL] is a function of type EMPLOYEE -> [STRING, NUM]. The
function [NAME, SAL] applied to an EMPLOYEE produces a
[STRING, NUM] tuple.

lEMPLOYEE.* [NAME, DEPT.DNAME];
is a query which produces the names and department names of all

employees. The result of this query is of type *[STRING, STRING].

Another useful operator is restriction, denoted by "|". If p

is a predicate ( a boolean valued functicn) then |p restricts
sequences by that predicate. For example, |MARRIED is of type
*EMPLOYEE ~-> *EMPLOYEE, and will filter cut, from any sequence of
employees, those that are married,

!EMPLOYEE. |[MARRIED.* [NAME, SAL];
is a query whose result is of type *[STRING, NUM] and which

provides the name and salary of married employees.

The ability to define new functions is extremely useful. The
average salary for a department may be defined as a function of
type DEPARTMENT -> NUM as:

AVESAL = {DEPT.*SAL.AVERAGE;
and the average fuqction may be in turn defined as a function of
type *NUM -> NUM as:

AVERAGE = [/+, LEN].DIV;

BRI XA

T
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vhere /+ adds up a sequence of numbers (perverting an APL

notation), LEN computes its length and DIV divides two numbers.

This last definiticn illustrates a number of points. 1In the
first place FQL functions all take one argument and return one
result. The effect of multiple arguments is achieved through the
use of tuples and selectors. The selectors are the functions
1, #2,... which respectively select the first, second.. members
of a tuple. Second, it is possible to define arbitrary functions
in FQL, and since the basic list processing functions are
available, together with recursion, FQIL provides the same
computational power of pure LISP. Third, variables are not needed
in function definition: this turns out to be a considerable
advantage in evaluating FQL expressions es the overhead of
preserving "environments", which is substantial in many lazy
evaluation schemes, is greatly simplifiec. Fourth, it is possible
to define functions and to evaluate FQL expressions without
reference to any database. For example,

{1, 2).+;
is a valid FQL expression and will be evaluated. It is surprising
how many database gquery languages fail to provide the power to
evaluate simple arithmetic expressions, even though they can
perform arithmetic when it is embedded in a database query. Note
that in FQL, for uniformity, the numeric constants 1,2... and the
boolean and string constants are trecated, as constant functions.
Likc the function !EMPLOYEE, their result is independent of their

argument. During the evaluation of a query, the result of

IEMPLOYEE will not changc; however, over a longer time scale, we
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may expect the function !EMPLOYEE to be considerably less

"constant™ than the number 1.

Further examples of FQL function definitions, including some
that exploit recursion, are to be found in [3, 9). The appendices
to this paper give a specification of the FQL syntax and a
comprehensive list of built-in fuactions. A few examples are
given here in order to demonstrate the use of the operators

described above in some simple database queries.

1. The names and department names of all married employees.
{EMPLOYEE. lMARRIED. * [NAME, DEPT.DNAME];
The output o this query is a sequence of pairs of strings

(type *[STRING, STRING]).

2. The name of :2ach depértment together with the names of all
married employees in that department.
{DEPARTMENT. * {DNAME, 1DEPT.|MARRIED,*NAME];
Unlike the previous example, the output from this query is
"hierarchical”®”, of type *[STRING, *STRING]. Each department
name will be followed by a sequence of employee names. Note
that {DEPT generates a sequence of employees for cach

department.

- - - h B W . A A e Gmh > VP e e = S P A A G . TR Y G @ D AR R P e S e =

1. The notation used in [3, 9] is slightly different. The inverse
of a function, DEPT say, which is denoted here by {DEPT, was

denoted by !DEPT. The "#" sign is used here for a selector,
rather than a numeric constant, Also, in the version of FQL
currently being implement.d, therec is no need to declare data
types when defining a query or function.




Page 13

The names of all married employees who earn less than the
average salary for all employees.
!EMPLOYEE.]MARRIBD.]([SAL,!EMPLOYEE.*SAL.AVERAGE].LT).*NAME:
Note that the double restriction could be replaced by a single

restriction and a conjunction.

The names and salaries of all employees in the sales
department.
{EMPLOYLE. | ( {DEPT.DNAME, “SALES”).EQ).*[NAME,SAL];

The output of this is of type *[STRING, NUM].

The names and salaries of all employces in the sales
department,

| DEPARTMENT. | ( [DNAME, “SALES”].EQ).*{DEPT./CONC.* [NAME,SAL);

A possibly more efficient version of the previous query.
Notice that after *{DEPT we have a sequence of sequences of
employees., CONC is a function that concatenates two
sequences; /CONC, the reduction of CONC over a sequence,
"flattens" a sequence of sequences (note the analogy with /+).
The possibility of automatically performing the transformation

from example 3 to this example is briefly discussed later.

Does a department have more unmarried than married employees?
MOREMARRIED = {DEPT.[|MARRIED.LEN, | (MARRIED.NOT).LEN).GT;
This is a function of type DEPARTMENT -> BOOL that defines a
predicate on departments. (Recall that LEN computes the

length of a sequence.)
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7. The names of such departments

{DEPARTMENT ., | MOREMARRIED, *DNAME ;

Finally, we should introduce one further operator, which
although its use in database queries appears limited, is extremely
important in the internal definition of the interface between FQL
and the database access subroutines. The operator & takes a
function £ and creates a sequence-producing function which
generates the sequence obtained by applying succeséive powers of £
to an argument. For example, |

N.saddl;
generates the secquence 0, 1, 2 ... and

[0, 1}.&[$2 +).*%1
generates the Fibonacci sequence. The second example illustrates
the use of the s<«lectors $#1, #2 to access components of a tuple.
It is a property of the implementation that both sequences are
produced 'indefinitely and will in practice only terminate on

arithmetic overflow or when interrupted by the user.

To recapitulate, a database is viewed as a collection of
functions over various data-types. Five operators, compose (.).,
tuple ({...]), extend (*), restrict (]) and generate (&) are
available for combining the database and built-in functions into
new functions and queries. Using the notation *® to denote the
type of a sequence of some type & , and [v,,%,...,%¥,] to denote

the type of tuples of &, ,«,,...,%n, we may summarize the types of

functions procduced by these operators as follows:

-

——
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1. Compose. If f and g are such that {:a ->F and
g: ->y then f.g: x ->y .

2. Extend. 1If f:& ->f3 then *f operates upon a sequence of
these types; 1i.e., *f: *ol ->*3 ,

3. Restrict. If p is a predicate over &« (i.e.,
pP: ® ->bool) then |p: *ot ->x:.

4. Tuple, If f,:X ->f,, f,:¢ ->f,... f, s ->ﬁ.,then
[£, 06,0 6,0t X > (B0 poees gl

S. Generate. If f : X ~>A then &f : X ->*,

3.0 IMPLEMENTATION STRUCTURES

It should be apparent from the previous section that the main
problem in implementing FQL, or a languag2 like it, will be with
the representation cf sequencees. Fcr reasons of space, sequences
cannot, in goneral, be manifested as in-core lists or arrays; and
their representa:ion as files in secondary storage is needlessly

time consuming.

The solution to this problem is to represent sequences as
coroutines that provide their successive members as these are
required by some calling program. The technique was originally
suggested by Landin {16} and several programning systems [5, 10]
have exploited the technique in various ways. We shall use the
term stream for this representation of a sequence: Burge [4]
gives an excellent description of how the iterative control

structures of conventional programming languages can be

represented as operators on streams.
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We shall represent a stream as a two component data structure
whose first component is the first member of the stream, and whose
second component is a suspension. Informally, a suspension is a
"promise” to create another stream. 1t consists of a function f
and an argument a; the application of f to a creates another
stream, the "tail" of the original stream. A procedure such as
PRINT, which has to traverse a stream, must do so by repeatedly

evaluating suspensions.

Suspensions have been introduced for the purpose of
representing streams, but they can also be used in other places to
cut down unnccessary evaluation., An example is the familiar
"if p and g then.." in which the evaluation of q is only required
if the evaluation of p yields TRUE. 1In this case, p and g may be
represented by suspensions which are evaluated, if needed,‘by and.
Since we are dealing with a side-effect free system, the usual
arguments for (or against) requiring that q be evaluated do not
apply. The technique of delaying the evecluation of expressions
until their values are needed is known as "lazy" evaluation: it
is particularly relevant to database queries because the
alternative of "prompt" evaluation may call for unnecessary and
time-consuming accesses of cecondary storage. We shall therefore
use it not only for the representation of streams but also for the

basis of evaluation of any FQL exprecsion.
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3.1 The Internal Representation Of FQL Expressions.

It will be convenient to use a uniform physical structure
both for the representation of an FQL expression and for the
intermediate data structures created during the evaluation of such
an expression. We use the notation {§I’§Z"'5\} for a structure
containing the finite sequence of objects x , X,,..x, The
structure may be implemented as a linked list or an array,
depending on what is most expedient in the chosen programming
environment, Operators must be available for sclecting the ith
component of such a structure and for constructing it from its
components. It will also be convenient to describe the role of a
structure in the evaluation process by an initial letter between
the braces; for example a suspension consisting of the function f
and the argument a will be denoted by {U £, a}. There will in
fact be four types of structure used in tne evaluation process;
their roles should become apparent as the evaluation technique is

developed, but we chall briefly introduce them here:
{u £, a} denotes a suspension (U for Uncvaluated). The
components of a suspension are a function f, and an

argument a.

{r £,, £,,.. £,] denotes a functional form. This is a compound

structure representing a function. 1In general, the first
component, f,, of a functional form will denote an
operator and the remaining components will represcnt

functions or functional forms.
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: {T x,, X,,.. x,} denotes a tuple. A tuple is a structure that
cannot itself be further evaluated, and may serve as an
argument in a suspension. The components of a tuple may
themselves be suspensions, and are subject to further
evaluation. Note that we have used the word "tuple"
ambiguously to refer to a data type, an operator and to an

internal data structure,

{s x, u] denotes a stream. This is a special two-component
tuple whose second member is always a suspension. This is
used for the representation of very long (or "infinite")

sequences, typically those in the database.

Not all these diutinctions are required; however a field or
variant type statement describing the role of a structure will be

found invaluaile for debugging purposes.

The result of evaluating an expression must be a printable
object. The printable objects are, by dafinition, the printable
atoms, such as character strings and nuwders; and streams and
tuples of printable objects. For example, printing seclected
fields from all the records in a given class will call for the

creation of a stream of tuples of printable atoms.

An FQL expression is internally represented as a function or

functional form. If F is a (built-in or user-defined) FQL

function symbol, we shall use f to denote its internal

representation and, more generally, ¢ will denote the internal

S et nad
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representation of an FQL expression E. The rules for the

translation of FQL into an internal representation are quite

simply:

F -> £ for any user-defined or built-in
function symbol F (this includes
numbers and string constants.)

E,.E, -> {F compose, e,, e,}

[§| ’Ez"’_E_n] -> {F .t_UP_l_E_, € _G_z"‘g.v]}

$i -> {F select, i}

*E -> {F extend, e}

|E -> {F restrict, e}

sE -> {F generate, e}

where comnose, tuple, select etc. are internal references to
functions whose implementation we shall shortly describe. As an
example of the translation,

[1,2) .+

is represented as

{F compose, {F tuple, 1, 2}, plus}

What has been done here may simply be regarded as a syntactic
transformation of the expression. It also represents a minimal
form of "compiiation" in which symbols are replaced by internal
pointers, and expressions by data structures. As we shall

indicate later, compilation involves somewhat more than this.
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3.2 Evaluation Of An Expression

This structure produced by compilation still represents a
function; and in order to create an object that may be evaluated,
we first embed it in a suspension, giving it a dummy argument @:

{u {F compose, {F tuple, 1, 2}, plus}, g}

In this suspension, the value of the argument will be irrelevant

because the function is constant, i.e it ignores its argument,

Now the process of evaluating a suspension may be performed

through a very simple reduction rule, which we shall call evalstep

evalstep({u £,a}) =

£ if £ is atomic
anply(f,a) if £ is built-in
{1 def(£),a} if £ is user-defined

{" e = {F E‘, -g-l'..—e-h}

Irn

‘I{T EI__e_’_I'OSn}} if

The effect of eval-step can be understood in terms of the data
structure used to represent an FQL function f. The four lines of

evalstep deal with four possible function types:

Atomic (line 1), Atomic functions include numbers, guoted
strings and the boolean values true and false. Treating
these as functions is merely a syntactic convenience,

It would be quite possible to add an explicit apply

operator in the source language (FQL) and treat them as

objects rather than functions.
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Built-in (line 2). This includes both the functions (plus,

and etc.) and the operators (compose, restrict. etc.).

A built-in function has some reference or index that is

understood by apply. L

User-defined (line 3). Internally, a user-defined function .
has a name, which may be used for debugging or for
printing out definitions of other functions; and a def,

| which is the definition of this function. This indirect

‘ reference is essential in interpreted systems in order

to allow for the dynamic definition and redefinition of

functions by the user.

Functional form (line 4). Consider a simple suspension such
as {U {F extend, £}, s}, where f is some function that ‘
may be applied to elements of the stream s. extend is, ?
like MAPCAR in LISP, an operator, which takes as
arguments a function and a stream and applies the 3
function to each member of the stream. The form f
{F extend, f] represents a function in which extend has
been given one of its arguments. It is a "partial
application" [5} or "Curried" function [4). When this 1
form is in turn applied to a stream, we transform the
suspension {U {F extend, £}, s} into the suspension
{u extend, {T £, s}} in which the function £ and the i

stream s are combined into an explicit argument for

extenc., The final line of the definition of evalstep
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describes a generalization of this transformation that

will also cope with forms such as {F compose, e,, e,}. .

The function evalstep performs a single reduction step and ;j

may not completely evaluate a form; it could return another f

o T — T

NSRVANT SIS PPN

suspension. However, it is usually called in situations where it

is required to return an explicit result. We therefore use

evalstep to construct a function eval that will evaluate until

something other than a suspension is returned.

eval (u) =
u if u is not a suspension ]
eval (evelstep(u)) otherwise

In practice, eval would be implemented as an iterative program.

We now turn to the the operators and some of the built-in

N .

functions. For each such function or operator f, we must define

the result of apnly(f,x):

apply (compose, {T a, £, g}) = !
{v g, {v £, a}} H'

Composition is in reverse polish order.
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apply(tuple, {T x, £ ,,£,,...}])
{T {U _f_‘r?i}r {U Ezvi}---}

Note that the members of a tuple are not evaluated by

tuple.

apply(select, {T x, i}) =

iselect (eval(x), i)

where iselect is the internal function that finds the
ith clement of a tuple. The argument x must be
evaluated in order to obtain a tuple, but the selected

element itself is not evaluated.

Before looking at the other (stream processing) operators,
let us examine the evaluation of our simple FQL query: [1,2].+ .
As described above, this is translated into the suspension:

{u {F compose, {F tuple, 1, 2}, plus}, g}
This is given to eval which, after one application of evalstep
creates the suspension:

{u compose,{T #, {F tuple, 1, 2}, plus}]
The next application of eval-step will apply the operator compose
to give the suspension:

{u plus,{u {F tuple, 1, 2], &}}
At this point apply(plus,s) is called. Now the internal function
for plus, call it iplus, is a two-argument function which will

require both of its argumecnts evaluated, this can be done by

apply:
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apply({plus, u) =

iplus(eval (iselect(1l, x)),

eval (iselect (2, x)))

vhere x = eval (u)

In our example, u is

{v {Fr tuple, 1, 2}, ¢}
which evaluates to:

{u tuple, {T 8, 1, 2}}
which in turn evaluates to:

{r {v 1, g}, {v 2, g}}
by the definition of tuple. The evaluation of the components of
this tuple respectively yield 1 and 2; ipius now has both its
arguments, and yields 3, which completes the example. At first
sight this appears to be a somewhat laborious method of adding two
numbers, but this is largely an illusion resulting from the
syntactic represnntation of data structures. The physical
reduction of the original expression has involved a only a small
number of list or array operations that do not involve a great
deal of processing. However, the main point is that the
efficiency and power achieved in a database environment, where the
importance of reducing i/o usually domninates othe- considerations,

is greatly enhanced.

3.3 Stream Processing Operators

At the beginning of this section, we mentioned that a stream

is a two-component structure denoted by {S x, u} whose second
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component u is a suspension. The first component x, which may or
may not be a suspension is termed the head of the stream. The
result of evaluating u must be another stream, which is called its

tail. The stream operators may now be defined:

{rn

apply(extend, {T s, f}) =
{s {u £,x}, (U extend, {T u, £}}]
where {S x, u} = eval(s)
In other words, the argument for extend must first be
evaluaiied until it is a stream; a new stream is then
created whose head is a suspension., There is a good
reason for leaving the hecad unevaluated: the function f
may ca'l for a database access, and this may be
unneccssary. For example, one night only want to
retriese the third record in a sequence, given a stream
of indices for those records, in which case retrieving

the first two records would be pointless.

k apply(generate,{T x, £}) =

{S X {U generate, {T {U £, _’_(_}: f}}}

Although the expansion of a stream produced by generate
3 appears to give rise to deeply nested suspension, this
does not, in practice, happen, for reasons that we shall

give shortly.




Page 26

& apply(restrict,{T s, p}) =

| {s x, {u restrict, {T u, p}}} if eval({u p, x}) is true
.? {u restrict, {T u, p}} if eval({U p, x}) is

| false

where {§ x, u} = eval(s)

None of these stream processing operators has any provision for
the termination of streams. There is a special atom end that is
recognized by the operators extend and restrict. For example,
extend will always map end into end, irrespective of the function
f that it is extending. Under certain circumstances, the operator
generate (or a variant of it) will produce end; this is useful in
building the database interface. Note that the normal list

terminator NIL is therefore equivalent to the FQL expression &end.

In most database queries, stream termination is controlled by the
underlying streams defined by the database. It is a simple matter

to extend FQL with operators that correspond to the iteration

control statements, such as while..do.. or repeat..until.. of

conventional programming languages. See Burge [4] for details.

In order to complete our discussion of evaluation, we should
explain how the result of a query, or any expression, is printed
out. It is in fact the function print that drives the whole
evaluation. print is initially given a suspension and must call

for its complete evaluation.

print(s) =
iprint(x) if x is atomic

% ra TR ;.
R '(’“9'&"13*2 5
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for i = 1 ton do print(x;) if x = {T x ,x ..x ]

sprint (x) if x is a stream

wvhere x = eval(s)

We have assumed an internal function iprint that can deal with the

atomic types: STRING, NUM and BOOL. sprint is another iterative

procedure that traverses a stream (using tail) and recursively
calls print on the successive hecads until the end-of-stream marker

end is encountered.

3.4 The Databasc¢ Interface

In this section, we shall describe some of the details of an
interface to a Codasyl system. Although this does not
automatically geaieralize to all database management systems, most
of the systems taat the authors have examined (including the
relational systems) have, at some internal level, subroutines or
control blocks that suppoft record~at-a~time access to the
physical database. In our initial implementation of the language

we were particularly fortunate to have at our disposal a Codasyl

system, SEED [1l1l}, that provides, together with the DBTG (6]

standard data manipulation routines, a set of subroutines that
answer questions about the database schema. This makes the
process of checking a query extremely simple: in other systems

one might have to resort to reading a (parsed or unparsed) version

of the Data Definition Language.
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To our set of primitive types, NUM, STRING and BOOL, we shall
add two ncw internal types, DBID (Database Identifier) and CP
(Currency Pointer). A DBID is any name associated with the
schema: for a Codasyl system, a DBID may be the name of a record,
item or set. A CP is a physical record address. According to the
DBTG specifications, there is a group of FIND subroutines that
operate on a global set of currency pointers. Our first task is
to confer some "functionality" on these subroutines. Consider the
problem of representing a set traversal. One would normally
establish a currency pointer to the owner record and then do a
"find-first-in-set" to obtain the first member record. A
"find-next-in-sel" procedure is then repeatedly invoked to obtain
currency pointers to successive member records of the set. An
error flag is se. when the set is exhaustz2d. These two FINDs may
be represented by two functions., findfs (find-first-in-set) is of
type [CP, DBID]->CP. Given a CP for an owner record and a DBID
for the set, it produces a currency pointer for the first member
record of the set or end if the set is empty. findns
(find~next-in-~set) is also of type [CP, DBID]->CP., It is given a
CP to a member record and the DBID for the set, and returns the CP
for the next member of the set, or end if the set is empty. With
these definitions, it is a simple matter write a function genset

. . " —— P - ——— — ———— o — -

The FIND commands may all be variants of one subroutine. Date [7]
and Ullman [25]) present concise descriptions of these.
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in FQL, of type [CP, DBID}]->*CP, that generates the stream of all !

currency pointers to records owned by the given record in the :

given set. genset is: B

[findfs, #2).&[findns, #2).*#1
The sclector #2 in the second position of the second tuple
preserves the DBID, a set identifier, for successive applications

of findns.

To be more precise about how FQL codec is interpreted, we

first add to our translation table of Section 3.1, the rules:

b -> {F inverts, D} if D is a set DBID

D -> {F seto, D} if D is a set DBID

D -> {r item, D} if D is an item DBID
b -> {F invertk, D} if D is a CALC key DBID
D -> {F instances, D} if D is a record DBID

Type checking should be done to ascertain that the operators have

been used correctly. We may now exploit the function genset,

defined above, in the application of inverts:

apply(inverts, {T ¢, a}) =

{u gensets, {T ¢, d}}

where ¢ is a CP and d is a DBID. The code for gensets can also be

represented, somewhat more efficiently, as an internal function.

apply(inverts, {T ¢, d}) =
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‘i {u generate, {T {u findfs, {T ¢, a}},
é {F findns, d}}} ’
} ¢ However, it should be noted that once the data access routines ;
have been expressed applicatively, the database interface can, to |
a great extent, be written in FQL, ?

Traversing a record class (instances) is done by

apply(instances, {T x, d}) =
{u generate, {T {U findfc, 4},
{F findnc, 4}}}

Where findfc, of type DBID->CP, finds CP for the first record in a
class and findnc, of type [CP, DBID)->CP, finds CPs for successive
members of that class. Since {F instances, D} is a constant

function, the argument, x, is ignored. Doing a CALC key access to

a sequence of records with the same key may be done in a very
similar fashion. The remaining functions, seto (for set

ownership) and item (for access to items in a record) correspond

directly to the database subroutines.
At this point it may be illuminating to trace through some

key points in the evaluation of the query of Section 1.0,

retrieve NAME from EMPLOYEL where AGE < 30 and

SALARY > avcrage{retrieve SALARY from EMPLOYEE)
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This is expressed in FQL by the expression

'EMPLOYEE. | ([ [(AGE, 30].LT, (SAL, AVESAL].GT ].AND).*NAME;

i.e. |EMPLOYEE generates the stream of all employees, |(..)

g~
PRI F” AP ED-  P. LIRSS}

restricts this to the stream of just those employces that satisfy

|

the predicate (call it P) within (..), and *NAME converts this to
the stream of names of these employees, which is to be printed.
As in Section 2, AGE and SAL are functions that, when applied to

an employee, return that employee”s age and salary respectively,

and AVESAL is another FQL expression that finds the average salary

of all employees.

The top-level "PRINT" drives the evaluation of this
expression by embedding its internal form in a suspension with a

dummy argument, ind calling eval, expecting a number,string,

boolean, tuple o: stream:

{u {F compose, {F compose, e,,./ e },

{® extend, namel}l, &}

where e, .. is {F instances, EMPLOYEE}, the internal form of

Mp

IEMPLOYEE, and ) is the internal form of |P. After a few

P
evalsteps, this is transformed into ]

{u extend, {T ey name} }

where e, is {u {F compose, ecuer g‘P}, #}. evalstep then applys

extend, which evaluates 91' expecting a stream. After a few

evalsteps, e; becomes

{u restrict, {T e, gP}}
where e, is {U egyp, #}, which is
{u {F instances, EMPLOYEE}, ¢}, and ep is the internal form of

the predicate P. restrict, via apply, cvaluates C 4 to get a
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; stream (S §1, EEMP}' the head of which is the first employee Xgo 4
and the tail of which is a suspension tg,p that represents the
H
stream of remaining employees. restrict now enmbeds Xq in a x
[

U
o
1

suspension with e the predicate P, and evaluates it, expecting a

P'
boolean value indicating whether the employee satisfies P; 1i.e.

it evaluates
{v {F compose, {F tuple, € ace €5, )r andl}, X}

where gA“ and e, are the internal forms of [AGE,30].LT and

[SAL, AVESAL].GT respectively. After further evalsteps, this

becomes

{u and, {u {F tuple, e, s e, }/ x,]]
and evaluates its argument to first get a tuple ;

¢ -

iT{ve,  »x,}, {0e, x4} |
and then evaluates the first component of the tuple, {U squf'ii} #

|

to get a boolean result, Suppose this is true (i.e. thec age of I
employee Xy is less than 30). and then evaluates the second

component {U e Suppose this too returns true (note that

saL ' 1} *
this is the first time that the average salary is evaluated) and

thus returns true to restrict.

restrict now has the first element of the stream; it

constructs the stream {S x gi], and returns it to extend, where

1'
L, is {u restrict, {T [P epll, in which t,, is the tail of the

stream of employecs and ep is the predicate P.

Having got a stream, cxtend returns a new stream to PRINT,

(s {v name, x,},{U extend, {T t,, name}}}.
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PRINT now has a stream. It evaluates the head {U name, KL}
and prints it out~ the name of the first employee satisfying the
predicate. It then turns its attention to the tail, a stream

which is still a "promise” to extend name to a stream, which is

still a "promise® to restrict, with predicate P, another stream,
which in turn is still a "promise™ to get the stream of remaining
employees. The evaluation of this tail applys extend, which
evaluates ty, which applys restrict, which evaluates Esé,WhiCh
returns a stream with the second employee x, as its head,...and so

on.

Again, we should point out that although the trace of
evaluation of this guery appears quite conplicated, this results
from our syntactic representation of data structures with shared
sub-structures: the physical processing nostly involves
relatively simple list processing operations. 1In our current
impleinentation, less CPU time is spent is spent on the compilation
and interpretation of a query such as this, than is spent in the

database access routines. 1In any case, the perceived delays

almost always are a result of i/o waits.

i‘
f
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4.0 IMPLEMENTATION DETAILS

In the previous section we gave an abstract description of
the code for a FQL interpreter. If this were to be taken
literally and transcribed into some programming language, the
resulting code would be extremely inefficient and space consuming.
For example, a programmer will discover that there are a number of

places wvhere, for the sake of simplicity, we have needlessly

constructed suspensions. In this scction we shall describe a

number of important implemcntation details that lead to a dramatic

improvement in efficiency of interpretation without compromising

the benefits of lazy evaluation.

4.1 Avoiding Repeated Evaluation

In our abstract description of the interpreter we used a

purely applicative formalism, in which the entire control

structure was defined through function calls. Taken literally,
i.e. if the "result" returned by eval is always a physically "new"
structure, this would require the repcated evaluation of the same
expression. Consider a simple queiy:

(3,4).0+,82)
If the evaluation of this is traced, therz2 arc points at which

evaluation of the two suspensions:

{v plus, {u {F tuple, 3, 4}, g}}

and
{U select, {T {U {r tuple, 3, 1}, a4}, 2}}
is called for. The (physically) coomon sub~expression
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{u {F tuple, 3, 4}, #) would be evaluated twice. The situation
is very much worse in the case of queries such as the Fibonacci

sequence (Section 2), where producing the nth element will require

order n calls to evalstep.

However, if we realize that eval performs a reduction, from
one expression to another, "simpler" expression that is always
mathematically equivalent to the first, we can make eval replace
the suspension it is evaluating wvith its value. The code for eval
therefore has the "benign side~effect" [10) of modifying its
argument; when this expression is accessed from other surrounding
expressions, it will be found to be evaluated already. To
illustrate this technique, consider a PASCAL implementation of the
FQL interpreter. It is convenient to describe all the internal

data types of the interpreter ac variants of one major type,

OBJECT:

type OBJECT = {OBCELL;

OBCELL = record
case OBTYPE = (INDIRECTION,
ATOM,TUPLE,STREAM

SUSPENSION ... ) of

INDIRECTION:
ATOM :
TUPLE :
STREAM :
SUSPENSION :

end;

(CONTENTS: OBJECT)

The definition of eval in scction 3 suggests a function whose

header is:

function EVAL(O: object):

T

object;

© R DLl A T
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Instead, we use the code:

procedure EVAL(var O: object);
var RES: object;
begin
while OLOBTYPE = SUSPENSION do
begin
RES := EVALSTEP(O)
O;.OBTYPE := INDIRECTION;

OT.CONTENTS := RES;
0O := RES
end

end;

The "var" in the parameter description of EVAL indicates a
call by reference. The pointer O is thus physically reset to
point to the result, and the original object theat O pointed to is
changed to an indirection object. Subsequent calls (if any) to
EVAL with the cane original object as argument will immediately
find a pointer to the evaluated result. T'he effect of this form
of EVAL is also =0 replace any component >f a tuple that contains
a suspension with the value of that suspension. As a result, the
interpretation of expressions involving & (such as the FQL
expression for the Fibonacci sequence) do not create increasingly
nested suspensions, but involve a constant number of evaluation
steps for each application of generate. Turner [24], in
describing a graph reduction technique for the interpretation of
applicative languages through the use of combinators, reports a

similar need for an indirect reference.

There is an important exception to this rule of replacing
suspensions with their values. If a stream is evaluated in this
fashion, then each time the second component u of a stream

{s X, g] is cvaluated, the suspension v will be replaced by a
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pointer to another stream element. Thus, as the stream is
traversed, it is "solidified" into a linked list., Although this
is acceptable in some programming environments, it cannot happen
in a database application because the represcntation of a database
sequence as an in-core list will be physically impossible. The
solution to this problem is to ensure that all functions and
operators use the special function tail as the only method of
traversing a stream. tail copies the object corresponding to the
second component of the stream before calling eval, thus shielding
the original object from the "benign" side-effect, leaving it

intact,

4.2 Garbage Collection

The implemcntation we have described clearly calls for the
dynamic creation of new structures such as streams, tuples and
suspensions; ard while programming languages such as PASCAL and
PL/1 provide automatic allocation methods, they do not
automatically detect that a structure is no longer referenced, and
that the storage it occupies may be de-allocated. It is up to the
programmer to decide at what point in the program a structure is
no longer referenced and to issue an explicit instruction (FRZIE or
DISPOSE) to return the storage occupied by the structure to the
run—-time system. It is theoretically impossible in this
evaluation scheme to predict when a structure is no longer
referenced., Some form of dynamic garbage collection mechanism is

required, Fortunately all structures created by this evaluation

N
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pointer to another stream element. Thus, as the stream is
traversed, it is "solidified" into a linked list. Although this
is acceptable in some programming environments, it cannot happen
in a database application because the represcntation of a database
sequence as an in-core list will be physically impossible. The
solution to this problem is to ensure that all functions and
operators use the special function tail 2s the only method of
traversing a stream. tail copies the object corresponding to the
second component of the stream before calling eval, thus shielding

the original object from the "benign" side-effect, leaving it

intact.

4.2 Garbage Collection

The implementation we have described clearly calls for the
dynamic creation of new structures such as streams, tuples and
suspensions; and while programming languages such as PASCAL and
PL/1 provide automatic allocation methods, they do not
automatically detect that a structure is no longer‘referenced, and
that the storage it occupies may be de-allocated. It is up to the
programmer to decide at what point in the program a structure is
no longer referenced and to issue an explicit instruction (FREE or
DISPOSE) to return the storage occupied by the structure to the
run-time system. It is theoretically impossible in this
evaluation scheme to predict when a structure is no longer
réfetenced. Some form of dynamic garbage collection mechanism is

required. Fortunately all structures created by this evaluation
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technique are acyclic: they do not contain circular chains of
pointers. A simple reference-count garbage collection

scheme [9]) may therefore be employed. Each structure contains a
reference-count field that counts the number of other structures
that directly refer to it. Should this count fall to 0, the space
occupied by the structure may be rcturned to free storage, and the
reference counts of all structures referenced from this structure
may be racursively reduced. The advantage of this scheme is that
it works synchronously: garbage collection does not, in general,

cause large-scale disruptions in program execution,

As a matter of practical importance to PASCAL programmers:
the DISPOGE command is often left unimplemented. It is therefore
necessary to keep one or more free lists of unused structures. It
considcrably simplifies the code, and the efficiency of storage
allocation, if all such structures are instances of just one data
type. Variants of this type are used to implement the different

kinds of structure required by this evaluation scheme.

4.3 Compilation

The only forw of compilation described so far is the simple
translation of an QL expression into an internal list structure,
There are several reacons for adding some further translation

checks at compile time. In the first place, some database

3. A recursive function dcfinition does contain a circular chain,
but this 1is broken by an indirect reference through the symbol
table.
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management systems do not allow character strings to be used as
DBIDs. The character strings known to the user must be translated
into internal references before a query may be run. The
translation tables may not be kept in the same physical file as
the database, and may not be structured in a way that allows a
character string DBID to be repeatedly translated into its
internal form with any degree of efficiency. It is therefore
advisable to scan all the functions involved in a ®ery at compile
time and substitute the "internal" DBIDs for the external database

names.

A sccond ard important improvement Lo efficiency may be
achieved by -the compile-time detection of "constant-valued"
suh-expressions This formalism treats the form {U £, 3}
uniformly as a tunction £ applied to an argument a. When evalstep
finds £ to be atomic (BOOL, STRING,NUM), it is treated as a
"function that ignores its argument a", and £ is directly
returned. 1Ideally we would like the same thing to happen even
when f is a complicated expression that is constant-valued; we
would like a to be ignored and the value of £ to be returned
directly. However, the final reduction rule in evalstep, i.e.

evalstep({u £, ah) =

{ve,, {Ta, eyeereyd)  if £={F e e,i.urel
always splits f into a new structure surrounding a even if f is
constant-valued and uvltimately ignores a. When evaluation reaches

come other part of the query that points to this same f, this
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process will be repeated.

Consider the following part of a query that finds all

employees with salary less than the average salary:
IEMPLOYEE. | ( [SAL,AVESAL] .LT)

where AVESAL is an expensive FQL function that returns a constant
value over the duration of gquery evaluation. As part of the
overall evaluation, the form {U def (AVESAL), 5} is to be evaluated
over each cmployee x generated by !EMPLOYEE. Because of the
restructuring of this form by the reduction rule in evalstep, the
form is re-evaluated, at great expense, each time it is

encotintered,

1f, however, we knew that the expression £ in {U £, a},
though complicated, was constant-valued, we could avoid the
restructuring, evaluate £ by itself, and replace £ by its value.
All forms {U £, b}, {v £, c}, etc. in other parts of the query
that refer to the same f thus simultancously benefit from this

evaluation, and, in fact, £ will be evaluated only once.

It is possible to detect and "tag" constant-valued
sub-exprescions at coinpile-time with very little overhead, by

modifying the translation rules. For exanple,
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boolean, string, numeric constants F are translated into

{k £}

{F compose, & {x 22}} is translated into
{k e,)
{F compose, {K gi}, gl} is translated into
{k {ve,, {ke,ll]
where {K e] indicates that the sub-expression e is
constant-valued. 1In this way, the "K" tags "bubble" up to the top
of maximal constant sub-expressions; in fact, a complete query is
always a constant expression. eval and evalstep can now be
nodified slightiy to take advantage cf thece "K" tags. 1In
particular, eval({K e }) just replaces e by eval(e), and
evalstep({U {K o}, a}) returns {K e} irrzspective of the form of
€. Thus constant-valued subexpressions are never evaluated

repeatedly, and we obtain the desired improvement in efficiency.

Detecting constant sub-expressions is a special case of type
checking. 1In the first implementation of FQL, the user was
required to specify the range and domain types for each of his
defined functions., The compiler would then check that each
definition was well-typed before executing the query. There are
certain advantages to allowing some type checking to be delaycd
until run-time. For example, it is possible, in some databasc
managemnent systems, to traverse a collection of mixed record
types. In the current development of FQL, wec hope to achicve the

benefits of bolh compile~ and run-time type chccks. This is
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briefly discussed in the final section.

5.0 EXTENSIONS

There are several directions in which the techniques we have
described could be extended. The developmnents of immediate
practical importance for database interfaces include (1) A more
“"user oriented" query language: it should be possible to
construct a translator for a language that syntactically resembles
SEQUEL into the control structures we have described. (2)
Interfaces to other database management systems. For the most
part, DB*Ss at some level provide the kinds of sequence traversing
control that is used in Codasyl; but th:re are important
exceptions. An ADABAS query may return a bit vector that
describes the lccations of records in a sequential file that have
a given property. To include such struc:ures in FQL prescnts no
fundamental problem, since all the FQL operators have a meaning
when used with vectors., The only question is whether to make
vectors visible to the user as a separate data type, or to make
the choice of physical representation an internal decision for the
interpreter. (3) Updates. While FQL was designed to overcome
problems with database query languages, it would be an advantage

if it could also handle updates within the same gencral framcwork.

Of these three developments, we see only the update problem
as requiring new control structures. In this section we shall
briefly discuss the update problem and sowme further optimization

techniquoes,
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5.1 Updates

From a purely applicative viewpoint, the purpose of an update
is to create a new database without destroying the original.
While some systems have been proposed, especially in the area of
office automation, that never "forget" data [15], this is an
unrealistic proposition for most practical database applications.
A simple-minded approach to updating in the functional model is to
regard an update as a redefinition of some extensionally defined
database function in terms of some (intentional) function
definition. Thus to update the SAL(ary) function, one must
provide a new defirition of it: for exanple, SAL := [SAL,1.05].x
would give everyone a 5%t raise., To add new members to a class
such as EMPLOYEL, one must provide the values of all database
functions on thase employees (a strcam of tuples), and invoke a

suitable updatirg primitive for !EMPLOYEE.

Such updates are similar in form to defining new functions,
and should only be allowed as top level commands in any system.
Thus, an update may not occur as a sub-cixpression of somc FQL
expression. Moreover, there should be no need for this. The
update primitives suggested are all bulk updates. The intentional
component of an update may be an arbitrarily complex expression,

and may involve external files or databases.

While such update primitives are adequatc for a pre-defined
database, such as an existing Codasyl system, they will be

inadequate for the user who wishes to extend the schema of the

database dynamically. We sce it as being highly desirvalile for the
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user to add incrementally new types and new database functions.
This appears to be essential for "personal" databases and for the
"federated" DBMS proposals discussed by McLeod [18]). However,
while we believe that a very simple functional model, such as the
one we have described, is adequate for defining database queries
(especially when these involve heterogeneous systems), a
semantically richer model is desirable for update specification.
We are currently developing [26] a simple DEMS that may be used in
conjunction with an FQL processor, and vhich will support some

recently proposed [12,23] semantic extensions.

5.2 Interfaces For Other Programming Languages

A common problem arises from the nced to embed a database
access mechanisn. in some programming language. Although this
should become less important as gquery languages become more
powerful, in a practical operating environment, query languages
fail to provide all the tools that are provided by a
general-purpose programming language. There are in fact two
problems, one is how to embed the query language in the
programining language itself; the other is how to return data to

the calling program.

The simple solution to the first problem is to embed database
queries as character strings, and to call some subroutine that
interprets the character string as a query. A less trivial
approach is to merge the two languages either by means of a

preproce...or, oy by modifying the compiler for the programming
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language., Although an applicative language such as FQL and
varieties of the relational calculus can be expressed as a set of
functions in a "von Neumann" language such as Pascal, PL/1 or ADA,
a programmer in such a system might be somewhat confused at the
two styles of programming. Embedding FQL in a language such as
LISP, which is based upon an applicative formalism, is much more
natural. It may have been noted that our symbolic notation for
the internal representation of an FQL expression (section 3.1)
corresponds directly to the syntax of a LISP S-expression, and

that this is an alternative surface syntax for FQL.

The second problem, that of returning data to the calling
program, is cleanly solved by these implementation structures,
The class of structures that can be retur-ned to the calling
program is precisely the class of printawnle structures, That is,
the atomic types such as STRING, NUM and BOOL; and, recursively,
any combination of stream or tuple of these. 1In order to traverse
such a structure, the calling program rejuires only the functions

head, tail, select and the predicate null to check whether a

stream is empty. The result of applying these predicates is to
produce either an atom or something of type tuple or stream.

Through these functions, the calling program may pcrform multiple

traversals of the output structure.
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$.3 Query Optimization

FOL, although it is concise, is still a low-level language in
the sense that the evaluation of a function or query is directly
determined by its definition. 1In a higher level programming
system a query may be transformed into a more efficient
representation. For example, the query that prints the names of
those employees who earn less than the average salary for their
department is simply expressed in FQL as:

1EMPLOYEE. | ( [SAL,DEPT.AVESAL] .LT) . *NAME;
where AVESAL ics of type DEPARTMENT->NUM and has been defined to
compute the average salary of the employces in a given department,
Unfortunately, none of the techniques so far described will
prevent AVESAL from being recomputed for each employee. There are
two solutions to this problem. One is to store values of AVESAL
as they are computed, thereby turning AVESAL into an extensionally
defined function (this is sometimes called "memoizing"). The
other is to observe that the query can b2 made much more efficiert
if it is based upon a traversal of the DEPARTMENT class, rather
than the EMPLOYEL class. In order to do this, the query must be
subjected to a set of syntactic transformations. For example,

IEMPLOYEE --> IDEPARTMENT.*{DEPT./CONC
where /CONC concatenates a stream of streams, is an allowable
transformation. Combined with other transformations, it can be
used to generate the efficient version of the query for, say, a
Codasyl databasc. We have not yet attempted to augment our

existing implementations with such optimizing techniques, nor are

we sure that the optimization should be done by the FQIL processor
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itself as opposcd to some higher-level system that generates
FQL-like queries. The point to be made here is that a functional
expression of a database query reduces the problem of optimization
to one of syntactic manipulation of expressions, much as has been

suggested for the relational calculus [25].

5.4 The Use Of Data Types

In our initial implementation of FQL, each query and function
has a type, and these wcre provided by the user for each
user-defined furnction., A "compiler", as well as gencrating the
internal form of an PQL expression, also checks that a query and
all functions reguired by that query, ar» well typed. It aiso
converts database identifiers (the DBIDs mentioned in Section 4)
into their inte:nal form. This is too restrictive, especially
since a number of apparently well-formed expressions cannot be
typed in advance. For example, the funccion that takes the secord
element of a stream, TL.HD, cannot be completely typed because we
do not know the underlying type of the stream. Thus a separate
function must be defined for each type of stream, *NUM, *STRING
*EMPLOYEE, etc. This problem has been renrcdied by the
introduction of "wild-card"” types: the type of TL.HD is given as
*?A -> ?A, where ?A is a wild-card type, but there remain other

problems.

We are now experimenting with a systow in which much of the

type checking is delayed until run-time. There are a numbhnr of

reazons for Going this. First there are databaces in which
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streams may contain mixed types (this is actually allowed by the
Codasyl standard). Sccond, in the semantically richer DBMSs .
mentioned earlier, it is useful to have predicates which determine .
a type, and functions which coerce one type into another. Third, (1

since 'L is already in use as an interface for a number of #

Natural Language systems, it may be appropriate to embed it in

L LISP or sowe other "untyped" language that is suitable for such
applications. Fourth, it may be useful to have at an internal
level, alternative representations of types: for example a stream

could be recpresented as we have suggested in this paper; it could '

also be reprecerted as an array. In an untyped system, it would

be possible to write the bulk of the routines for manipulating and

cocrcing such types in FQL itself,

In the lon¢ term, however, we believe that the correct i
solution is to have a richer calculus for data types, and to %
cmploy a mixture of compile-time and run-time checking. Using |
techniques similar to those proposed in [19], it is possible to ' 3
assign a type automatically to many exvressions. Moreover, to
have type information available at run-time may simplify parts of
the interpreter. For example, in the implementation we have
describ2qg, ecach built-in function is responsible for deciding
whether to cvaluate its arguments. However, this job could be i
given to eval (as it is in conventional languages), if it could be
determined, at run-time, that say plus requires a tuple of
numbers, while and requires a tuple of objects that are either

boaoleans or suspensions that will generate booleuns.  In general,

there are waoen (20} probleas ineslvin. of ficiency and debujyging
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for lazy evaluators. While these have not caused a problem in the .

S0 il eV e A 3

relatively simple functions and queries that are usually built up
in a database environment, it may be that a more sophisticated
treatment of data types will lead to a more efficient mixture of

prompt and lazy evaluation in general programming environments.
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Appendix A
FQL Syntax

The following BNF gives the syntax for a function

definition (<def>), a data-type (<type>), a functional
expression (<fexpr>), and a function (<function>) itself, ¥
Optional components are denoted by "{"..."} " while "{"..."} *
signifies a set of elements may occur an arbitrary number of

times.

fl

<def> ::= <name>{:{<type>}—><type>}=<fexpr>;
<type> ::= NUM

s:= STRING

s := BOOL

1= *<type>

*
[<type>{,<type>}"])
<fexpr> ::= <function>{.<function>}*

<name>
*<function>

| <function>
&<function> *
[<fexpr>{,<fexpr>} ]
(<fexpr>)

! <name>

~<name>

<function>
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appendix B

Standard Functions

The standard functions supported by FQL are grouped here by their
type.

Arithmetic functions

The functions +, -, %, /, and MOD all map frcm [NUM,NUM] into
NUM. The functions /+ and /x perform addition- and
times-reduction on streams of NUMs; 1i.e., they map *NUM into
NUM. Given an empty stream these functions return their
respective identities, 0 and 1.

Relational and Boolean Functions

The operators EQ, NE, GT, LT, GE, and LE map from either
[NUM,NUM] or from [STRING,STRING] into BOOL. The functions AND
and OR map [BOOL,BCOL] into BOOL; the complement NOT maps BOOL
into BOOL. The two reduction operators, /OR and /AND, represent
mappings frcwm *3O0OL into BOOL and, given empty streams, return
the values "true" and "false" respectively.

Constant Functicns

Any numeric constant represents a mapping ->NUM whose value is
this constant. Any character string s: milarly denotes the
mapping ->STRING. !<name>, where <name> identifies a database
class, is a function that generates all members of that class.
The function NIL is a constant signifying the empty stream of

any type; i.e., ->*a« |
Basic Stream-manipulating Functions

Given a non-emptyv stream, the operation HD returns its first
element (*® ->o) while the operation TL returns a stream of the
remaining elements (*A =>*«K ), The function CONS takes an
element of some type and a (possibly empty) stream whose
elements are of that sawe type and returns a new stream in which
the individual element is its "head” while the original stream
becomes its "tail"; i.e., CONS : [l ¥ J=>%ol,

Other Stream-manipulating Functions

The function LEN computes the length of a given stream and is
thus a mapping from **X into NUM. CONC maps a pair of streams
[*o¢ ,*o. ] (whose clements are of the sawne type) into a single
stream *~ ; /COIC producces a single stream *~ by "flattening"
an arbitrary strcam of streams **w. . The opcrator DISTRIB takes
a tuple of the form [*x« , ) and returns a stream of tuples

*{«< ,041 with the value o type f2 "distributed”™ over the stream
of « ‘g,
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Miscellaneous Functions

The function #i (i=1,2...n) selects a component from a tuple;
iced, [ , X, 000, Xn]=>¢, 1ID is the identity mapping

o ~> A,
Database Functions
then if D names a function, then

If D is & database identifier,
D is that function in an FQOL expression D is its inverse. If

D names a class then ID returns the stream of members of that

class (cee constant functions).




